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Abstract Muscadinia rotundifolia, a species closely

related to cultivated grapevine Vitis vinifera, is a major

source of resistance to grapevine downy and powdery

mildew, two major threats to cultivated traditional cultivars

of V. vinifera respectively caused by the oomycete Plas-

mopara viticola and the ascomycete Erisyphe necator. The

aim of the present work was to develop a reference genetic

linkage map based on simple sequence repeat (SSR)

markers for M. rotundifolia. This map was created using S1

M. rotundifolia cv. Regale progeny, and covers 948 cM on

20 linkage groups, which corresponds to the expected

chromosome number for muscadine. The comparison of

the genetic maps of V. vinifera and M. rotundifolia

revealed a high macrosynteny between the genomes of

both species. The S1 progeny was used to assess the gen-

eral level of resistance of M. rotundifolia to P. viticola and

E. necator, by scoring different parameters of pathogen

development. A quantitative trait locus (QTL) analysis

allowed us to highlight a major QTL on linkage group 14

controlling resistance to powdery mildew, which explained

up to 58 % of the total phenotypic variance. This QTL was

named ‘Resistance to Erysiphe Necator 5’ (Ren5). A

microscopic evaluation E. necator mycelium development

on resistant and susceptible genotypes of the S1 progeny

showed that Ren5 exerts its action after the formation of the

first appressorium, and acts by delaying, and then stopping,

mycelium development.

Introduction

Grapevine is an economically important crop worldwide,

and it has a central place in the cultural heritage of

humanity. The common muscadine grape, Muscadinia

rotundifolia [Michx.] Small (Weaver 1976; Bouquet 1980;

Olmo 1986; Mullins et al. 1992), is closely related to Vitis

species, to the point of being also referred to as Vitis

rotundifolia [Michx.]. Indeed, there is much taxonomic

controversy as to whether Muscadinia should be consid-

ered as a proper genus, or should be placed within Vitis.

Small’s (1913) classification will be used in this paper,

considering Muscadinia as a genus. Muscadine grape is

native to the southern United States of America, where it

has been cultivated for more than 400 years, playing an

important role in the history and sociology of this area.

Although introduced in Europe in the late 19th century

with most of the other American Vitis species, M. rotun-

difolia has not elicited any real interest from European

growers, since the few attempts at cultivating it conducted

at this time all failed (Bouquet 1983). From a genetic point

of view the diploid chromosome number in Muscadinia

species is 40 (2n = 40) in contrast to 38 (2n = 38) in Vitis

grapes (Patel and Olmo 1955). Many morphological, ana-

tomical and physiological characteristics also differ

between Vitis and Muscadinia. Muscadine fruit has a
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distinctive aroma and flavor, the juice being sweet in taste

and typically low in acidity (Olien 1990). Muscadine

grapes have a high degree of resistance to diseases that

commonly occur on bunch grapes, including grey mold,

anthracnose, nematodes, Pierce’s disease, and downy and

powdery mildews (Olien 1990).

Downy mildew caused by the Oomycete Plasmopara

viticola (Berk. and Curt.) Berl. and de Toni (Dick 2002),

and powdery mildew caused by the ascomycete Erisyphe

necator (Schw.) Burr. (synonym Uncinula necator) are two

important grapevine diseases. Plasmopara viticola and

E. necator were introduced in France from North America

during the 19th century together with accessions of

American wild Vitis species and rapidly spread across

Europe (Galet 1977). Today, they are found in all of the

temperate regions where grapevines are cultivated. Plas-

mopara viticola and E. necator are both obligate biotrophs

infecting all green tissues of the grapevine. Plasmopara

viticola infects leaves, inflorescences and young bunches,

leading to significant losses of productivity and quality

(Lafon and Clerjeau 1988). Erysiphe necator produces

whitish mycelia on the surface of leaves, stems, inflores-

cences and berries. Affected berries become russeted and

often crack, causing significant reduction in yield and fruit

quality. Grape powdery mildew epidemics can progress

rapidly and cause serious economic losses (Pool et al.

1984; Gadoury et al. 2001; Calonnec et al. 2004).

In Europe, Vitis vinifera is the most widely cultivated

grapevine species. All the traditional cultivars of V. vinif-

era are susceptible to downy and powdery mildew,

although susceptibility varies among cultivars (Boubals

1959; Dubos 2002). Control of downy and powdery mil-

dews on traditional European grapevine varieties requires

regular application of chemicals, and growers tend nowa-

days to limit risk of epidemics by applying large amounts

of fungicides. However, routine use of fungicides is

becoming increasingly restrictive because of their cost, risk

on human health and negative environmental impacts.

Furthermore, fungicide-resistant strains of P. viticola and

E. necator are now observed in the vineyard, decreasing

the efficiency of these sprays (Gisi 2002; Wilcox et al.

2003; Chen et al. 2007; Gisi et al. 2007; Gisi and Sierotzki

2008; Baudoin et al. 2008; Furuya et al. 2010).

In this context, plant breeding for disease resistance

appears to be an attractive way to control grapevine downy

and powdery mildew effectively and in an environmentally

friendly manner. Because of its high level of resistance to

numerous grapevine pathogens, M. rotundifolia is an

interesting source in which to study resistance factors.

Accordingly, QTLs (quantitative trait loci) for downy and

powdery mildew resistance have been identified from

muscadine grape: Rpv1 and Rpv2, located respectively on

chromosomes 12 and 18, were found to be responsible for

the resistance to downy mildew derived from M. rotundi-

folia cv. Trayshed (Merdinoglu et al. 2003; Wiedemann-

Merdinoglu et al. 2006). A major QTL located on

chromosome 12 and named Run1, was responsible for the

resistance to powdery mildew derived from M. rotundifolia

accession G52 (Pauquet et al. 2001; Barker et al. 2005).

Recently, Riaz et al. (2011) identified on chromosome 18

two loci, named Run2.1 and Run2.2, conferring resistance

to powdery mildew from M. rotundifolia cv. Magnolia and

M. rotundifolia cv. Trayshed, respectively. However,

introgressing these resistance factors into traditional culti-

vated European species is challenging. On the one hand,

hybridisation between M. rotundifolia and V. vinifera

species is hampered by the difference in chromosome

number between the Vitis and Muscadinia genomes

(Bouquet 1983), which often brings along sterility prob-

lems in F1 hybrids and backcross generations, thus

restricting interchange of genetic material between the two

genera. On the other hand, the process of introgression of a

resistance gene often results in the linkage drag of unde-

sired traits from M. rotundifolia that may remain even after

successive cycles of backcrossing.

Having a better understanding of the genetic and

genomic differences between M. rotundifolia and V. vini-

fera becomes a central issue, in order to create new resis-

tant grape varieties in an optimal way. Over the past

decade, a large amount of molecular genetic information

has become available to the grape research community for

the genus Vitis, including genetic maps from a wide range

of backgrounds (Dalbó et al. 2000; Doligez et al. 2002;

Grando et al. 2003; Doucleff et al. 2004; Adam-Blondon

et al. 2004; Riaz et al. 2004; Fischer et al. 2004; Doligez

et al. 2006; Lowe and Walker 2006; Welter et al. 2007;

Di Gaspero et al. 2007; Troggio et al. 2007; Salmaso et al.

2008; Marguerit et al. 2009; Bellin et al. 2009; Moreira

et al. 2010; Blasi et al. 2011), physical maps (Moroldo

et al. 2008), and a completed grape genome sequence

(Jaillon et al. 2007; Velasco et al. 2007). However, very

little genetic information is available for M. rotundifolia.

The lack of genetic studies concerning M. rotundifolia and

the absence of a genetic map for this species limit con-

siderably the opportunities to increase the efficiency of

breeding programs by means of marker-assisted selection.

It also restricts the exploitation of the resource provided by

the genome sequence of V. vinifera (Jaillon et al. 2007) to

understand the genetic and physiological bases of the traits

of interest carried by M. rotundifolia.

Here, we report the construction of a M. rotundifolia

genetic map using simple sequence repeat (SSR) markers

and the identification of a major QTL for resistance to

grapevine powdery, named Ren5 and located on linkage

group (LG) 14. Twenty LGs have been found for M. ro-

tundifolia, which corresponds to the expected chromosome
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number. The comparison of the genetic maps of V. vinifera

and M. rotundifolia showed a high colinearity between the

genomes of both species. These main results reported here

will allow a more efficient use of the Muscadinia resources

for the creation of high-quality grapevine resistant varieties.

Materials and methods

Plant material

In 2006, 669 seeds were produced from a selfing (S1) of

M. rotundifolia cv. Regale, a hermaphrodite accession

maintained at INRA Colmar, France. After seed germina-

tion, young plants were cultivated in stone wool substrate,

and watered daily with a complete nutritive solution (4.8 %

Norsk Hydro Hydrokani CPO, YARA). The mapping

population consisting of 191 progeny from this selfing was

maintained in greenhouse. Biological replicates between

years were produced by pruning the plants to the basal two

buds in winter and allowing them to re-grow in spring to

ensure uniform shoot development.

V. vinifera cv. Cabernet Sauvignon clone 338, V. vinifera

cv. Cinsault, V. rupestris cv. Rupestris du Lot, V. riparia cv.

Riparia Gloire de Montpellier and M. rotundifolia cv.

Regale were grown from green cuttings and maintained in

greenhouse.

Evaluation of resistance to downy mildew

A strain of P. viticola collected from V. vinifera cv.

Chardonnay in an experimental vineyard at INRA-Colmar

(France) in 2006 was maintained on 6-week-old seedlings

of V. vinifera cv. Muscat Ottonel placed in an opened

cardboard box covered with a plastic bag. After 5 days of

incubation in a growth chamber (21 �C, 100 % relative

humidity, 50 lmol/m2/s light intensity), sporangia were

recovered from infected leaves by immersion in water and

gentle shaking. The concentration of the P. viticola sus-

pension was measured using a cell-counting chamber.

Evaluation was performed as described in Blasi et al.

(2011). Two replicates were performed for each individual

of the S1 population and nine replicates for each control.

On 6 days post-inoculation (dpi), inoculated leaf discs

were scored for the general level of resistance (OIV452)

(Table 1). Two biological replicates were performed in

2009 and 2010, mean values of the two repetitions were

considered in the analysis.

Evaluation of resistance to powdery mildew

The experiments were performed with a strain of E. ne-

cator, Chlo2b (biotype B) collected from V. vinifera cv.

Merlot Noir at Pauillac (Gironde, France) in 2004 and

maintained on detached juvenile leaves of greenhouse-

grown seedlings from open pollination of ‘Muscat Ottonel’

or ‘Cinsault’.

Inoculation was performed as described in Miclot et al.

(2012), inside a vertical laminar flow station using dry

inoculation with a settling tower. Four culture dishes were

inoculated for each settling tower, containing one suscep-

tible control (‘Cabernet Sauvignon 338’ or ‘Cinsault’) and

one resistant control (‘Regale’). Two replicates were per-

formed for each genotype of the S1 population. Dishes

were then sealed and incubated in a growth chamber at

25 �C and a photoperiod of 18-h light/6-h darkness. Inoc-

ulated leaves were scored everyday, 3–7 dpi, for the two

semi-quantitative parameters described in Table 1 to

measure the effect of resistance on the mycelium devel-

opment of E. necator (MYC) and the intensity of sporu-

lation (SPO), as described by Miclot et al. (2012). The

7 dpi scores gave the more discriminating results and were

therefore the only time point considered in further analysis.

Mean values of two biological replicates performed in

2010 and 2011 were considered in this study.

SSR marker analysis

DNA extractions and microsatellite analysis were per-

formed as described in Blasi et al. (2011), with the fol-

lowing modifications. Amplifications were performed on a

Perkin Elmer 9700 thermocycler programmed as follows:

5 min at 94 �C, 14 cycles of 20 s at 94 �C, 20 s at 65 �C

with a touchdown (-1 �C per cycle) and 40 s at 72 �C,

followed by 35 cycles of 20 s at 94 �C, 20 s at 50 �C and

40 s at 72 �C, and a final step of 7 min at 72 �C. Micro-

satellite fragments were resolved either on an automated

ABI Prism 310 Genetic Analyzer (Applied Biosystems)

using a 36-cm capillary filled with the POP-4 polymer,

or on an ABI Prism 3100 Genetic Analyzer (Applied

Biosystems) using 16 9 50 cm capillaries filled with the

POP-7 polymer. Electropherograms were analyzed using

GenescanTM 3.1 (Applied Biosystems). Alleles were

identified using GenotyperTM 2.5.2 (Applied Biosystems)

and their size was determined using the HD400-ROX

internal size standard.

Genetic mapping

We used 451 primer pairs flanking microsatellite loci from

marker sets VVS (Thomas and Scott. 1993), VVMD

(Bowers et al. 1996, 1999), VrZAG (Sefc et al. 1999),

VMC (Vitis Microsatellite Consortium, Agrogene, Moissy

Cramayel, France), UDV (Di Gaspero et al. 2005), VVI

(Merdinoglu et al. 2005), VrG (Regner et al. 2006), VVCS

and SC8 (Cipriani et al. 2011), P2-298 (Pelsy, personal

Theor Appl Genet (2012) 125:1663–1675 1665

123



communication), Chr7V003, Chr7V004 and Chr14V015

(Blasi et al. 2011) and the newly developed Chr14V041,

Chr14V048, Chr14V054, Chr14V056 (Table S1).

All markers were screened for informative segregation

on the parent M. rotundifolia and 8–12 randomly chosen

individuals of the S1 population. One hundred and seventy-

seven polymorphic SSR markers were used to analyze the

entire mapping population. For mapping purposes, the

same segregation pattern was assigned to all markers

(\hkxhk[: locus heterozygous in both parents, two

alleles), and genotypes were encoded (hh,hk,kk) for co-

dominant loci and (h-,kk) for dominant loci, following

JoinMap 3.0 data entry notation (Van Ooijen and Voorrips

2001).

Linkage analysis was performed with JoinMap 3.0 (Van

Ooijen and Voorrips 2001), enabling the analysis of self-

pollinated populations derived from a heterozygous parent

and the construction of consensus linkage maps. Recom-

bination fractions were converted into centimorgans (cM)

using the Kosambi (1944) function. The threshold value

of the logarithm of odds (LOD) score was set at 4.0 to

claim linkage between markers with a maximum fraction

of recombination at 0.45. The goodness-of-fit between

observed and expected Mendelian ratios was analyzed for

each marker locus using a v2 test. Markers showing seg-

regation distortion were included in the final map if their

presence did not alter surrounding marker order on the

linkage group. Linkage groups were numbered according

to internationally acknowledged grapevine reference

genetic maps (Doligez et al. 2006; Di Gaspero et al. 2007).

QTL analysis

The genetic variance (r2
g) and experimental error variance

(r2
e) required for heritability calculations were estimated

using the statistical software R version 2.10.1 (The R

Foundation for Statistical Computing) in the lmer function

of the package lme4 by treating genotype as a random

factor. Broad-sense heritability estimates were calculated

on a genotype mean basis via the equation H2 ¼
s2

g= ðs2
g þ ðs2

e=rÞÞ (Gallais 1990), where the term r refers to

the number of replicates for each genotype.

QTL analysis was carried out using MapQTL 6.0 soft-

ware (Van Ooijen 2009). The significant LOD threshold for

QTL detection at P = 0.05 for each linkage group was

Table 1 Variables scored to assess the resistance level to downy and powdery mildew

Pathogen Variable name Description Scoring

Downy mildew OIV452 Symptom-based semi-quantitative scoring of

the downy mildew resistance adapted from the

criteria of the Office International de la Vigne

et du Vin (OIV; Anonymous 2009)

http://news.reseau-concept.net/images/oiv/

client/Code_descripteurs_2ed_FR.pdf)

From 1 (very susceptible) to 9 (totally resistant):

1 = abundant sporulation densely covering the

whole disc area, absence of plant necrosis

3 = abundant sporulation present in large

patches, absence of plant necrosis

5 = limited sporulation present in intercostal

patches, plant necrotic flecks or speckles

7 = sparse sporulation, necrotic spots

9 = no sporulation, absence of necrosis

or necrotic points

Powdery mildew MYC Visual semi-quantitative scoring of mycelium

development on leaf surface

From 1 (very susceptible) to 9 (totally resistant):

1 = widespread mycelium densely covering

the whole disc area

3 = widespread and locally dense mycelium

5 = widespread and sparse mycelium

7 = scattered and sparse mycelium

8 = rare and very short mycelium hyphaea

9 = absence of mycelium development

Powdery mildew SPO Visual semi-quantitative scoring

of sporulation intensity

From 1 (very susceptible) to 9 (totally resistant):

1 = widespread sporulation with high

density of conidiophores

3 = widespread with various density of sporulation

5 = scattered with various density of sporulation

7 = scattered with low density of conidiophores

8 = rare conodiophores

9 = absence of sporulation
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determined by three independent permutation tests (1,000

permutations) of the phenotypic data. Non-parametric

Kruskal–Wallis analysis and interval mapping (Mixture

Model method) were performed on OIV452, MYC and

SPO parameters. Maximum LOD values were used to

estimate QTL peak positions, and the confidence intervals

of QTL peaks were determined as the peak flanking regions

in which LOD scores declined by two LODs. A manual

cofactor selection was then used in Multiple QTL Model

(MQM) analysis for powdery mildew phenotypic data.

Scanning electron microscopy

Observations were performed on a Hitachi TM1000

tabletop scanning electron microscope, with a 15-kV

acceleration tension and a Backscattered Electron Detector.

Samples correspond to 1-cm discs generated from leaves

inoculated with the Chlo2b strain of E. necator using a

settling tower. Resistant and susceptible genotypes of the

S1 ‘Regale’ population were inoculated with E. necator

and observed 4 hpi (hours post-inoculation), 1 dpi and

2 dpi. Three genotypes were observed per class of resis-

tance level.

Results

Muscadinia rotundifolia genetic map

451 SSR primer pairs were tested on the S1 population,

from which 77 did not amplify or produced an unclear

banding pattern, and 197 lacked polymorphism and were

thus discarded. The remaining 177 primer pairs allowed us

to detect 181 useful loci scored on the progeny, 145 being

fully informative (hh,hk,kk) and 36 displaying a dominant

pattern (h-, kk). Chi-square analysis among the 181 map-

ped markers indicated segregation distortion for 33 mark-

ers (22.3 %).

One hundred seventy-eight markers were mapped on 20

LGs (Fig. 1), and three markers were linked but unmapped

due to weak linkages to other markers within the group.

The observed linkage group number is consistent with the

chromosome number in the Muscadinia genus (Bouquet

1983; Patel and Olmo 1955). Based on the latest published

V. vinifera reference map (Doligez et al. 2006), LG20 of

M. rotundifolia corresponds to the bottom part of V. vini-

fera LG7 (Fig. 2).

The total length of the map was 948 cM, with an

average distance of 5.3 cM between markers. The largest

group in terms of genetic distance, LG18, consisted of 12

mapped markers covering 80.4 cM, and the smallest, LG9,

consisted of 10 mapped markers covering 11.8 cM. In

terms of marker coverage, the largest group is LG14,

including 16 markers, and the smallest is LG8, consisting

of 5 markers. Overall, only 9 gaps were larger than 20 cM.

The largest gap was on LG14, where the distance between

marker VVC34 and VVIs70 was 35 cM. The marker order

was consistent with the order determined from the

V. vinifera genome sequence (Jaillon et al. 2007; http://

www.genoscope.cns.fr/spip/Vitis-vinifera-sequencage.html)

as well as with the V. vinifera reference maps (Adam-

Blondon et al. 2004; Doligez et al. 2006), although in two

genomic regions marker order was not syntenic in com-

parison to the reference maps [(LG6: ‘VVIp28 to

VVIm43’); (LG12: ‘VMC4c10 to VVIv05’)]. In these

regions, little discrepancies in marker order are observed

punctually, in particular for the positioning of VMC4g6 on

LG6 and VVIm11 on LG12. Finally, some markers showed

a multilocus pattern, and either they were located on

several chromosomes or they mapped to chromosomes

different from expected (VVIv61, VVIb19, VMCNG1d12,

VVIp02 and VVCS1E043E23F1-1).

The M. rotundifolia map covers 56 % on average in

genetic distance, compared to the reference map of Doligez

et al. (2006). Nevertheless, the genetic distance ratio

obtained using the common distal markers to align both

maps is 70 %, suggesting that the recombination rate is, on

average, much lower in the M. rotundifolia map than in the

reference map (Table 2). Taking into account the lower

recombination rate, the overall coverage of the map is

estimated at 80 %.

Analysis of downy mildew resistance

The reliability of the downy mildew resistance test was

assessed by scoring the OIV452 resistance parameter in

control plants that represent a range of resistance levels

from susceptible to highly resistant : ‘Cabernet Sauvignon

338’ (susceptible), ‘Rupestris du Lot’ and ‘Riparia Gloire

de Montpellier’ (both partially resistant) and ‘Regale’ (the

totally resistant parent of the S1 mapping population). All

control plants as well as the parent of the S1 population

behaved as expected for their level of resistance evaluated

in this study (Table S2).

Resistance to downy mildew displayed little variation in

the S1 population, which exhibits overall strong resistance

to the pathogen. The distribution for OIV452 in the S1

population ranged from 7.0 to 9.0, the most susceptible

individuals displaying strong partial resistance, whereas the

most resistant were totally resistant, like the ‘Regale’

parent. More than 90 % of the individuals were totally

resistant (OIV9), whereas the remaining part of the popu-

lation showed strong partial resistance (Fig. 3a).

In the S1 population, the genotype factor had a highly

significant (P \ 0.001) effect on OIV452 scores. Broad-

sense heritability, a direct measure of environmental
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effects on phenotypic variance, was calculated for OIV452

using 146 genotypes. On a genotype mean basis, herita-

bility for OIV452 was estimated at 0.53.

Analysis of powdery mildew resistance

The reliability of the powdery mildew resistance test was

assessed by scoring the two resistance parameters, MYC

and SPO, in the control plants ‘Cabernet Sauvignon 338’

or ‘Cinsault’ (susceptible genotypes), and ‘Regale’ (the

resistant parent of the S1 mapping population). All control

plants as well as the parent of the S1 population behaved as

expected for the two resistance parameters evaluated in this

study (Table S2).

Resistance to powdery mildew displayed a continuous

variation in the S1 population and segregated as a quanti-

tative trait, considering the mycelium development

parameter. The distribution of MYC in the S1 population

ranged from 3.5 to 9 (Fig. 3b), considering an average

score of the two biological repetitions. The most suscep-

tible individuals displayed partial resistance level, whereas

the most resistant were totally resistant, similarly to the

‘Regale’ parent. The MYC scores displayed segregation

patterns where roughly 50 % of the individuals were totally

resistant, whereas the remaining part of the population

showed various levels of partial resistance (Fig. 3b). The

genotype factor had a highly significant (P \ 0.001) effect

on MYC and SPO scores in the S1 population. Broad-sense

heritability for powdery mildew resistance was estimated

for the two scored parameters using 126 genotypes. On a

genotype mean basis, the estimate was 0.52 for SPO and

0.73 for MYC (Table 3).

QTL detection for downy mildew resistance

Despite the small phenotypic differences observed,

four markers located on LG18 were significantly linked

to the resistance for OIV452 using Kruskal–Wallis test

(P \ 0.005). Two of these markers, VMC6f11 and

VMC7f2, showed the highest possible level of statistical

linkage using the MapQTL software (P \ 0.0001). Interval

mapping analysis detected a QTL controlling resistance to

downy mildew in the same chromosomal region as the

Kruskal–Wallis non-parametric test (Table 4). This locus

accounted for up to 24.7 % of the phenotypic variation for

OIV452 (LOD score 6.06) and thus 46.6 % of the genetic

variance, considering the broad sense heritability estimated

at 53 %. This QTL was also detected for the two biological

replicates performed taken separately (data not shown). It

was located at a region covering a confidence interval of

VVIq350.0

VVIc726.5

VVIp1210.9
VVIq5715.2
VVIr06a19.5
VVIr06b19.7
VVIb9420.0

VVIp6025.2

VVIn6131.5

VVIs2136.3

VVIo6153.7

1

VVMD310.0
VVIs580.8

VMC1a214.8
SC8_0114_03016.2

VVIb1922.0

VVIq0627.8

VMC9a3.132.8

7

TT251F020.0

VMC5h45.6

VMC3b817.3

VMCNG2d1129.7
VVIt6531.6
VVIp02.2
VVIp02.132.6

VMC4c1033.8
VVIm1135.8
VVCS1H078D22R38.1
UDV05840.6
VVIb1042.1
VVIv0542.9
SC8_0301_00349.7

12

VVIv540.0
VVIb310.4
VMC8b51.4
VVIv161.7
VVCS1H058F02F6.1
VVSCU107.0

VMC8f4.232.4
VVIm1033.9

UDV13046.5

VMC6f1165.7
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20

Fig. 1 M. rotundifolia genetic linkage map. The linkage groups were numbered LG1 to LG19 according to Adam-Blondon et al. (2004) and

Doligez et al. (2006), and the remaining LG was named LG20
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19.2 cM, and it was placed between the SSR markers

UDV130 and VMC6f11 (closer to VMC6f11) (Table 4).

QTL detection for powdery mildew resistance

Significant QTLs for powdery mildew resistance were

obtained by interval mapping analysis, regarding mycelium

development (MYC) and sporulation (SPO) of the patho-

gen (Table 4). A major QTL controlling resistance to

powdery mildew was detected on LG14 for MYC and SPO.

Analysis based on MYC gave the highest LOD score

(23.73) and explained 58 % of the total phenotypic vari-

ance and thus nearly 80 % of the genetic variance, con-

sidering the broad sense heritability estimated at 73 %. The

same region accounted for 11.4 % of the phenotypic var-

iation (LOD score of 3.31) for SPO, and thus 22 % of the

genetic variance, considering the broad sense heritability

estimated at 52 %. The confidence interval for the QTL

detected for MYC was located between the markers

VVIp05 and Chr14V041 and the QTL peak was close to

SSR marker VMC9c1 (Table 4, Fig. 4a). Kruskal–Wallis

non-parametric tests confirmed these QTLs detected with

interval mapping (P \ 0.0001, data not shown). The locus

at this position was named ‘Resistance to Erysiphe necator

5’ (Ren5). The genome region between the markers flanking

the Ren5 confidence interval covers a physical distance of

3.08 Mb and encompasses around 150 genes, according to

the 129 grape genome sequence (http://www.genoscope.

cns.fr/externe/GenomeBrowser/Vitis/).

A minor QTL was detected on LG20 for SPO (LOD

2.52) very close to VMC8d11 (Table 4). This QTL

remained above the LOD threshold given by permutation

test analysis (data not shown), and VMC8d11 achieved a

fair statistical linkage to the disease QTL using Kruskal–

Wallis test (P \ 0.01).

Chosing VMC9c1 and UDV 050 as cofactors for further

analysis with composite interval mapping (MQM map-

ping), the sporulation specific QTL on LG20 remained over

the LOD threshold. Interestingly, a new minor QTL

appeared on LG5 close to VVIv21 for both MYC and SPO

(LOD 5.12 and 2.72), explaining 8.1 and 8.4 % of the

phenotypic variation, respectively, thus 11.1 and 16.2 % of

the genetic variance, considering the respective broad sense

heritabilities (Table 4). All the QTL detected were found

with the two biological replicates taken separately (data not

shown).

Microscopic evaluation of the effect of Ren5

on E. necator mycelium development

The marker VMC9c1 is the closest marker to Ren5. At this

genetic locus, the allelic form 132 is associated with the

resistance, whereas the allelic form 146 is associated with

susceptibility. As shown in Fig. 4b, the distribution of

MYC notations varies in groups of individuals based on

their genotype at locus VMC9c1, with all homozygous

132/132 (resistant) individuals having a MYC score above

7, whilst the majority of homozygous 146/146 (susceptible)

individuals show a MYC score of 7 or below. Heterozy-

gous individuals show a wider distribution of MYC score

and appear intermediate between the other two classes.

Scanning electron microscopy experiments were con-

ducted to visualize the effect of Ren5 on the early stages of

E. necator mycelium development. Resistant (132/132

form of VMC9c1) and susceptible (146/146 form of

VMC9c1) genotypes were inoculated with E. necator. Four

hpi, both genotypes supported development of the first

appressorium from the germinated conidia (Fig. 5), which

corresponds to normal pathogen development, as described

in Rumbolz et al. (2000). The presence of the appressorium

structure is linked to the subsequent formation of a haus-

torium, which represents the first stage of the biotrophic

phase of the fungus. Differences in mycelium growth

VVMD310
VVIs581

VMC1a215
SC8_0114_03016

VVIb1922

VVIq0628

VMC9a3.133

VVCS1H069K09R0.0

VMC8d114.5

chr7V003.218.8
chr7V003.122.2
chr7V00423.6

VVIv0438.3

VVIp02.348.9

M. rotundifolia LG7

M. rotundifolia LG20

V. vinifera LG7

Fig. 2 Macrosyntenic comparison between V. vinifera LG7 and

M. rotundifolia LG7 and LG20. All the markers located on

M. rotundifolia LG20 are located on V. vinifera LG7 in the same

genetic order. VMC9a3.1 and VMC8d11 (underlined) are separated

by 18.9 cM on the V. vinifera reference map, but in the M. rotundifolia
map they are located respectively the bottom extremity of LG7 and

the upper part of LG20. Dotted lines link common markers between

the two genetic maps. Vitis vinifera LG7 as in the reference map of

Doligez et al. (2006)
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between resistant and susceptible genotypes are visible

1 dpi; while resistant genotypes are still blocked at the first

appressorium stage, primary and secondary hyphae begin

to grow on susceptible genotypes. Two dpi, only primary

hyphae are seen on resistant genotypes, while branched

mycelium is observed on susceptible genotypes. The sus-

ceptible genotypes of the S1 population show less pathogen

development that ‘Cabernet Sauvignon 338’, which is

consistent with the macroscopic observations.

Discussion

Here, we report the first M. rotundifolia genetic linkage

map, based on an intra-specific progeny and using SSR

markers. Since SSR are easily transferable markers, there is

a high level of reproducibility and polymorphism of

V. vinifera-based SSR markers in non-vinifera species,

even in a M. rotundifolia background. More than 80 % of

the SSR markers tested on the S1 mapping population that

were originally designed on V. vinifera amplified per-

fectly on M. rotundifolia DNA. The grape SSR marker

system has been further used to manage M. rotundifolia

Table 2 Comparison of the genome coverage and genetic distances between V. vinifera reference linkage map (Doligez et al. 2006) and

M. rotundifolia genetic linkage map

Linkage group Markers common between

maps

Genetic distance between common markers Maximum genetic distance

Start marker End marker Reference map M. rotundifolia map Ratio Reference map M. rotundifolia map Ratio

1 VVIq35 VVIo61 69.2 53.7 0.78 87.5 53.7 0.61

2 VVMD34 P2-298 48.2 29.6 0.61 79.7 33.5 0.42

3 UDV093 VMC1g7 45.2 32.1 0.71 70.3 49.7 0.71

4 VVIr46 VMC6g10 87.9 67.0 0.76 90.9 67.0 0.74

5 VVC6 VVIn40 79 49.8 0.63 83.4 49.8 0.60

6 UDV085 VVIm43 57.9 38.0 0.66 82.5 38.0 0.46

7 VVMD31 VMC9a3.1 17.4 32.8 1.89 102.7 32.8 0.32

8 VMC1f10 VVIb66 87 54.8 0.63 112.7 54.8 0.49

9 VMC5c1 VMC6e4 60.6 9.8 0.16 104.1 11.8 0.11

10 UDV073 VVIv37 56.7 35.0 0.62 83.7 43.3 0.52

11 VVIm04 VVIv35 64.5 47.0 0.73 75.1 47.0 0.63

12 TT251F02 VVIb10 72.9 42.1 0.58 81.9 49.7 0.61

13 VVIn62 VMCNG1d12.1 92.4 56 0.61 101.1 56.0 0.55

14 VMCNG1e1 VVIn70 94.8 64.0 0.68 94.8 64.0 0.67

15 VVIv67 VMC4d9.2 32.4 21.9 0.68 37.9 34.5 0.91

16 VVIn52 VVMD5 61.8 51.5 0.83 92.4 51.5 0.56

17 VVIq22b VMC7f6 35.6 35.7 1.00 58 35.7 0.62

18 VVIb31 VMC7f2 94 70.9 0.75 131.5 80.4 0.61

19 VVIn74 UDV127 63.9 46.1 0.65 76.6 46.1 0.60

20 VMC8d11 VVIv04 22.7 33.8 1.49 – 48.9 –

Total 1,244.1 871.6 0.70 1,646.8 948.2 0.56
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Fig. 3 Distribution of parameters for downy and powdery mildew

resistance in the M. rotundifolia S1 population. Percentage of

genotypes in the S1 M. rotundifolia cv. Regale population in each

level of resistance for (a) downy mildew, using the OIV 452

parameter at 6 dpi. (b) powdery mildew, using the MYC parameter at

7 dpi. Individuals were classified in the different classes based on the

mean value of two biological repetitions
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germplasm collections (Riaz et al. 2008) and our study

confirms that it is a highly valuable genomic tool. The

proportion of SSR markers with biased segregation

observed in this study (22.3 %) was higher than that

reported by Doligez et al. (2006) (9.2 %), Blasi et al.

(2011) (11.3 %), Lowe and Walker (2006) (16 %) and

Troggio et al. (2007) (20.3 %), and slightly equivalent than

that of Grando et al. (2003) (22.4 %). Three clusters of

markers with a distortion of segregation were found on

LG6 (11 markers), LG8 and LG19 (6 markers each). The

development of the new SSR markers Chr14V041,

Chr14V048, Chr14V054 and Chr14V056 from the 129

grapevine genome sequence permitted the improvement of

the construction of LG14, and especially enabled a more

accurate detection and location of Ren5. Finally, 15 SSR

markers (VVIr06, UDV054, VVIq25, VVIu16, VrG4,

VVIm58, VVIq06, VVIv51, VMC5h4, VVIv47, VVIr29,

VVC5, VVIb68, UDV130 and VVIm33), whose positions

were unknown according to any previously published genetic

linkage map, and the 129 grapevine genome sequence

(http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/),

were accurately located in this study on 10 different LGs.

The M. rotundifolia genetic map was composed of 178

markers mapped into 20 LGs. The total length of the map

was 948 cM. Considering marker order, linkage group

sizes and map length, the M. rotundifolia map built in this

work is consistent with other published maps (Adam-

Blondon et al. 2004; Doligez et al. 2006) and with the

genome sequence [(Jaillon et al. 2007); http://www.genoscope.

Table 3 Descriptive statistical parameters for downy mildew and

powdery mildew resistance parameters in the M. rotundifolia S1

population

Downy mildew Powdery mildew

OIV452 MYC SPO

Average 8.89 7.62 8.95

Minimum 7.0 3.50 7.50

Maximum 9.0 9 9

Standard deviation 0.39 0.94 0.21

Heritability 0.53 0.73 0.52

Table 4 QTLs for resistance to P. viticola and E. necator detected in the M. rotundifolia S1 population

Pathogen Trait Linkage

group

Nearest

marker

Peak

position

2-LOD

interval

LOD

score

Percentage of phenotypic

variance explained

Trait

heritability

Percentage of genotypic

variance explained

Downy

mildew

OIV 18 VMC6f11 55.5 47.5–65.5 6.06 24.7 0.53 46.6

Powdery

mildew

MYC 14 VMC9c1 6.4 4.1–8.7 23.73 58 0.73 79.4

MYC 5 VVIv21 31.7 21.7–44.8 5.12 8.1 0.73 11.1

SPO 14 VMC9c1 6.4 0–21.4 3.31 11.4 0.52 21.9

SPO 20 VMC8d11 0 0–23.6 2.52 8.8 0.52 16.9

SPO 5 VVIv21 31.7 21.7–44.8 2.72 8.4 0.52 16.2

A BFig. 4 Distribution of powdery

mildew resistance based on the

genotype at the Ren5 locus

(a) M. rotundifolia LG14 and

confidence interval for Ren5
(grey box), the marker VMC9c1

being the most strongly

associated with Ren5.

(b) Yellow homozygous

resistant genotypes (132/132

form of VMC9c1); green
heterozygous genotypes (132/

146 form of VMC9c1); blue
homozygous susceptible

genotypes (146/146 form of

VMC9c1) (color figure online)
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cns.fr/externe/English/Projets/Projet_ML/index.html] except

for small discrepancies: two inversion sectors in marker

order between the M. rotundifolia map and the reference

maps, and a few cases where a marker was expected on a

LG and was actually located on a different one due to

multiloci alleles. One of the areas showing an altered

marker order mapped to bottom part of LG12, in a region

containing a large cluster of NBS-LRR genes, comprising

Rpv1 and Run1, two locus involved in downy and powdery

mildew resistance in ‘Trayshed’ and ‘G52’. NBS-LRR

clusters are known to be subjected to frequent reshuffling

and recombination events. The clustered organization is

supposed to favor sequence exchanges, such as unequal

crossing over and/or gene conversion events, which can

give rise, in some cases, to new (nonparental) R specific-

ities (Sudupak et al. 1993; Richter et al. 1995; Chin et al.

2001; Geffroy et al. 2009). Nevertheless, the high

colinearity between the M. rotundifolia map and the pre-

viously published V. vinifera maps reveals a high level of

global macrosynteny between both genomes. This finding

will greatly facilitate the exploitation of the resource pro-

vided by the whole genome sequence of V. vinifera (Jaillon

et al. 2007) to understand the genetic and physiological

bases of the traits of interest carried by M. rotundifolia.

Moreover, this framework M. rotundifolia genetic map will

help processing comparative genetic analysis, especially to

establish synteny for the regions that carry disease resis-

tance genes, and understand the evolution of genomes.

Recombination rate was, on average, much lower in the

M. rotundifolia map than in the latest V. vinifera reference

map (Doligez et al. 2006). Such a similar result was

obtained by Blasi et al. (2011) for a V. amurensis genetic

map which led to the conclusion of lower recombination

rates in the Asiatic species than in V. vinifera.

132/132 146/146

4 hpi

CS 338

1 dpi

2 dpi

pa

pa

phsh

Fig. 5 Electron microscopy images of resistant and susceptible

genotypes of the S1 population inoculated with E. necator. Resistant

(132/132 at VMC9c1) and susceptible (146/146 at VMC9c1)

genotypes of the S1 M. rotundifolia cv. Regale population, inoculated

with E. necator and observed 4 hpi, 1 dpi and 2 dpi with a scanning

electron microscope. Primary appressorium pa, primary hyphae ph,

secondary hyphae sh. Data are representative of three independent

genotypes per class. V. vinifera cv. Cabernet Sauvignon clone 338

(CS 338) is used as susceptible control. Scale bars represent 30 lm at

4 hpi, 100 lm at 1 dpi and 500 lm at 2 dpi
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The V. vinifera LG7 corresponds to two separated LGs

in the M. rotundifolia map, LG7 and LG20, M. rotundifolia

LG20 corresponding to the bottom part of V. vinifera LG7.

The markers VMC9a3.1 and VMC8d11, which are located

18.9 cM from each other in the V. vinifera reference map,

respectively represent the bottom extremity of M. rotun-

difolia LG7 and the upper part of M. rotundifolia LG20.

Considering the fact that the recombination rate in

M. rotundifolia is lower than in V. vinifera (Table 2), we

can assume that this distance should be even smaller in

M. rotundifolia. If LG7 and LG20 of M. rotundifolia were

part of the same chromosome we would then expect to find

them assembled on the M. rotundifolia map. Our results

thus strongly suggest that V. vinifera LG7 is splitted in two

chromosomes in M. rotundifolia. A genetic map more with

greater saturation in the VMC9a3.1–VMC8d11 interval, or

Fluorescent In Situ Hybridization (FISH) experiments

would help confirm this hypothesis.

QTL analysis demonstrated that downy mildew resistance

derived from M. rotundifolia was determined by a QTL

located on LG18 that explained nearly 46 % of the genetic

variance. The confidence interval of the LG18 QTL for

downy mildew resistance overlaps with Rpv2 from ‘Tray-

shed’ ( Wiedemann-Merdinoglu et al. 2006), which indicates

that downy mildew resistance in muscadine grape cultivars

Trayshed and Regale is at least partly governed by the same

region on LG18. Nevertheless it is currently too premature to

conclude that the same genetic factor is involved.

Resistance to powdery mildew displayed a continuous

variation in the M. rotundifolia S1 population, where the

most susceptible individuals displayed partial resistance.

This suggests the existence of one or more homozygous

non-segregating factors in the genetic background of

‘Regale’ that maintains residual resistance. Accordingly,

QTL analysis demonstrated that powdery mildew resis-

tance derived from M. rotundifolia was mainly determined

by one major QTL located on LG14 that explained almost

80 % of the genetic variance for mycelium development.

We named this locus Ren5, for Resistance to Erysiphe

necator 5. This major QTL impacts on both mycelium

development and sporulation intensity. A minor QTL

detected on LG5 explaining up to 16 % of the genetic

variation also plays a role in resistance. Moreover, a

genetic factor specific to sporulation and located on the

upper part of LG20 is involved in powdery mildew resis-

tance in ‘Regale’. The strong effect of Ren5 together with

the high level of genome coverage of the linkage map leads

us to assume that no significant genetic factor involved in

powdery mildew resistance other than those detected in this

study segregates in the S1 progeny. Microscopic observa-

tions suggest that Ren5 exerts its action after the formation

of the first appressorium and acts by delaying, and then

stopping, mycelium development.

Ren5 is located on the upper side of LG14, flanked by

SSR markers VVIp05 and Chr14V041, on a genomic

region never previously described to be controlling pow-

dery mildew resistance in M. rotundifolia or in Vitis spe-

cies. The locus Run1 has been identified to control

resistance to powdery mildew in ‘G52’ on LG12 (Pauquet

et al. 2001; Barker et al. 2005), and recently Riaz et al.

(2011) identified in M. rotundifolia cv. Magnolia and

‘Trayshed’ two loci for resistance to powdery mildew

named respectively Run2.1 and Run2.2, both mapping on

LG18. These results indicate that resistance to powdery

mildew from M. rotundifolia may have different locations

according to which cultivar is made use of. The Ren5 locus

is located in the confidence interval of Rpv8, the major

QTL of resistance to downy mildew identified from

V. amurensis (Blasi et al. 2011). Based on the latest version

of the grapevine genome sequence (129, http://www.

genoscope.cns.fr/externe/GenomeBrowser/Vitis/), the region

delimitated by markers VVIp05 and Chr14V041 is 3 Mb in

size and contains around 150 predicted genes, which means

that it is a bit premature to speculate on a putative candi-

date for Ren5 function. Nevertheless, inspection of this

region on the 129 version of the grapevine genome

sequence revealed the presence of at least 7 predicted NBS-

LRR genes as well as V. vinifera EDR1 a regulator of

defense responses (Frye et al. 2001). Thus, we cannot

discard that Ren5 is a member of the NBS-LRR class of

disease resistance genes.
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